Trypanosome CNOT10 is essential for the integrity of the NOT deadenylase complex and for degradation of many mRNAs

نویسندگان

  • Valentin Färber
  • Esteban Erben
  • Sahil Sharma
  • Georg Stoecklin
  • Christine Clayton
چکیده

The degradation of most eukaryotic mRNAs is initiated by removal of the poly(A) tail, and the major deadenylase activity is associated with the CCR4/CAF1/NOT complex (NOT complex). We here study the role of CNOT10, a protein that is found in human and trypanosome, but not in yeast, NOT complexes. Trypanosome (Tb) CNOT10 is essential for growth. TbCNOT10 interacted with the deadenylase TbCAF1 and the scaffold protein TbNOT1; TbCAF1 also interacted with TbNOT1 in a yeast two-hybrid assay. In both trypanosomes and human embryonic kidney cells, approximately half of CAF1 was associated with the NOT complex. Depletion of CNOT10 from human cells did not affect this association. In contrast, depletion of TbCNOT10 in trypanosomes caused a decrease in the level of TbNOT1, detachment of TbCAF1 from the complex and pronounced stabilization of most trypanosome mRNAs. Artificial tethering of TbCAF1 to a reporter mRNA in vivo resulted in mRNA degradation, and this was not affected by TbCNOT10 depletion. We conclude that in trypanosomes, TbCNOT10 may stabilize the interaction between TbCAF1 and the NOT complex. The results further suggest that TbCAF1 is only able to deadenylate mRNA in vivo if it is recruited to the mRNA through other NOT complex components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

I-52: Maternal mRNA Metabolism duringOocyte-to-Zygote Transition

Background: Maternal mRNA degradation is a selective process that occurs in waves corresponding to important developmental transitions such as resumption of meiosis, fertilization and zygotic genome activation. It has been demonstrated that the number, position, and combination of 3 UTR cis-acting elements interacting with trans-acting protein factors regulate translation and mRNA stability. Ou...

متن کامل

A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells

The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and ...

متن کامل

Presenting a Conceptual Model for Integrating Urban Space Network with \"Living Community\" Approach*

Undoubtedly, public spaces can be considered as an essential factor, which could contribute to urban arrangement, create and maintain a strong local center and enhance the quality of superior environment and the sense of citizenship. Moreover, integrity has always been the most basic structural qualities and one of the key principles of cities. Integrated urban spaces exhibit the integrated str...

متن کامل

The CAF1-NOT complex of trypanosomes

In African trypanosomes, there is no control of transcription initiation by RNA polymerase II at the level of individual protein-coding genes. Transcription is polycistronic, and individual mRNAs are excised by trans-splicing and polyadenylation. As a consequence, trypanosomes are uniquely reliant on post-transcriptional mechanisms for control of gene expression. Rates of mRNA decay vary over u...

متن کامل

طرح تحلیل تعدادی از mRNA های مادری مخصوص اووسیت در جنین تک سلولی موش

Introduction & Objective: During oogenesis, mRNA is actively transcribed and accumulated in the growing oocytes, and then the transcription stops. Transcription silencing will continue during early embryonic stages at least up to the time when the embryonic genome is activated. Thus the earliest stages of embryogenesis in mammals and other animal species are depending on stored maternal RNAs an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013